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Abstract

To create believable 3D animated faces, actors’ facial expressions are retargeted from monocular
RGB videos onto 3D character rigs. Though, the workflow requires large amounts of tedious and
time-consuming manual labor, due to the psychological sensitivity and complex structure of the
facial rigs. Consequently, the goal of this work was to automate the facial motion capture pipeline
as much as possible. This thesis proposes a fully automated solution to register virtually any
rig and proposes an unsupervised learning based algorithm capable of posing the registered rig
based on a single frame of a video performance, synthesized by a deepfake algorithm. This makes
the pipeline independent of the actor’s external characteristics, lighting and background. A user
study in the form of an expert interview was conducted to evaluate the usability and quality of the
prototype design, which showed that the algorithm is able to save averagely 56% of the expert’s
time. The prototype’s output poses are also preferred in 60% of the 30 cases, when compared to a
traditional point tracking solution. The study also suggests that the algorithm is able to supersede
other monocular point tracking methods if minimal manual labor is required and is more easy to
use than current solutions. To the best of our knowledge, the algorithm proposed in this work is
the first unsupervised image-based learning algorithm for retargeting facial animations based on a
single frame of a processed RGB video to a generic 3D character, not relying on any actor-specific
initialization or training.
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1 INTRODUCTION

1 Introduction

Realistically animated faces in media have posed multiple challenges since their introduction in
the commercial world of video games and movies. When dealing with 3D facial animation, there
is no getting around the anatomical structure of a face when trying to digitally recreate a realistic
face. Depending on the way they are counted, a human face has more than 30 muscles and a highly
deforming layer of skin on top. For the area in between the nose and the upper lip alone, upwards
of six muscles are moving the surface of the face [Westbrook et al., 2019]. This complex system
of nerves, muscles and skin is responsible for important functions we rely on in our daily life,
such as eating, speaking and the expression of emotion. Humans are in general well versed with
their ability to convey emotion through their own face and the recognition of facial movement and
expressions, as psychological research has found that the accurate processing of facial expression
is a social necessity and a prerequisite for successful social living [Niedenthal and Brauer, 2012],
implying a need for self-improvement among participants of social interactions. The geometry of
the face is consequently a psychologically sensitive and mechanically complex structure.

A field in which the previously named significance of accurately deformed faces plays a
large role, is Human-Computer Interaction (HCI). Every time a person interacts with some
form of computer-generated or -driven humanoid face representation (e.g. a robot), the
person’s response can change based on the type of depiction presented in front of them.

Figure 1.1: The uncanny valley as depicted
by Mori [Mori, 1970], translation by Mac-
Dorman and Kageki [Mori et al., 2012].

This phenomenon refers to the so-called "Uncanny
Valley" as first described in Masahiro Mori’s arti-
cle "Bukimi No Tani" (eng.: The Uncanny Valley)
in 1970. In the article, Mori presented a correlation
between the human likeness of robots and the emo-
tional response of humans reacting to them and em-
phasized the difference between dynamic and static
objects, the moving ones having a larger effect on
the response from the observer [Mori, 1970] than
their motionless equivalents (as shown in Figure
1.1. While the Uncanny Valley is a widely used
term, later research has shown that there is no such
thing as a "valley", rather that people become pro-
gressively sensitive to human-like robots and media
with increasing realism [Hanson et al., 2005]. Fur-
thermore, the study found that if the visual representation of a human is designed well, any level of
realism can be perceived positively. While the requirements of "well designed" were not specified,
they revised the idea of a "valley" into a theory they named "Path of Engagement" (POE). This
POE theory states that realistic faces possess a denser information flow and are therefore prone to
causing unfavorable emotions, such as disturbance, oddity or "surreal" feelings, more easily than
their less realistic counterparts.

Although the authors express the need for further exploration around the proposition, both
the Uncanny Valley theory and the POE theory agree that the level of authenticity of artificial
faces correlates with the chance of triggering negative reactions. Moreover, both theories coincide
that moving faces are introducing additional challenges, thus complicating the task of creating
positively perceived faces across the entire spectrum of human likeness.

Creating dynamic faces for robotics is not the only application for realistic human represen-
tations, though. Movies, video games and other types of dynamic media have been increasingly
incorporating realistic computer-generated faces, undertaking the previously named challenges to
create likable representations of human or human-like characters. To tackle the problem of com-
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1 INTRODUCTION

plex facial layouts and high requirements for simultaneously realistic and appealing faces, 3D
animators and software engineers have developed multiple approaches, such as using a number of
controllers to create a network structure capable of moving a 3D character’s face. The controllers,
part of such a virtual skeleton (also known as "rig"), are referred to as "bones" and their importance
for deforming 3D faces can be quantified by measuring the difference in concentration of bones
in the face and the rest of the body. "A Facial Rigging Survey" from 2012 [Orvalho et al., 2012]
listed a number of significant facial rig approaches ranging from 1996 up to 2011 and by looking
at one of the most recent rigs, it is noticeable that even the simplistic body of the cartoon-like 3D
character "Otto" [Vasconcelos, 2011], is mapped to 33 bones for the face and 32 for the rest of the
body, while more realistic rigs usually contain several times of that amount of bones for the face.
This statement reinforces the previously formulated observation, in that the face is a mechanically
complex structure, from more than just a medical perspective. Often needing more controllers to
accurately deform a 3D representation of itself, than any other part of the human body.

Multiple research institutions and corporations are determined to find viable solutions con-
cerning the difficulties described earlier, including The Walt Disney Company, one of the top 5
international media corporations in the world (as of 2020) [Wäscher and Hachmeister, 2021]. A
state-of-the-art report published in 2018 by a network of research laboratories of The Walt Disney
Company, called "DisneyResearch", summarizes the current approaches, applications and propos-
als regarding the reconstruction and tracking of 3D faces from a single viewpoint [Zollhöfer et al.,
2018]. The authors state that monocular facial tracking is not able to supersede the well integrated
controlled multi-view setups, that are part of today’s content creation pipelines, yet, due to their
lower tracking quality. Although they emphasize that further research is needed to narrow the gap
between lower performing single-view and high-quality multi-view solutions, in order to pave the
way for more accessible facial tracking technology and new types of applications. The report also
concludes, that the existing pipeline for creating photo-realistic virtual humans still requires large
amounts of tedious and time-consuming manual labor and is far from being a fully automated
workflow. Accelerated production times and a large impact on the 3D animation pipeline would
be the consequence, if such a process could be automated, according to the authors.

Following up to this call to action, the objective of this thesis is to automate the facial motion
tracking pipeline in its entirety. To a point where a 3D animator needs to provide an algorithm with
just an RGB video of an actor performing the desired facial expressions and any preexisting facial
rig, while maintaining a certain degree of animation quality. While it would make an interesting
endeavor, the goal of this research is not to meet the standard in quality of current state-of-the-art
facial motion capture technology. Rather automating the pipeline as much as possible, to provide
accessible software without the usual learning curve. Therefore, independent game developing
studios, 3D animation freelancer or even educational institutions are able to create basic facial
animation in a feasible and cost-effective manner. To ensure that 3D animators of all skill levels
are able to use such an algorithm without having to learn any prior concepts, a robust system
must be developed that can work with a wide variety of video inputs and 3D characters. This
demands a pipeline capable of working with multiple lighting setups, different backgrounds, that
is unaffected by the actor’s external characteristics and is rig-independent. The latter is particularly
interesting, because our study showed that setting up a character rig with motion capture software
is on average a tedious, unpleasant and manual labor intensive process. Consequently, being able
to use virtually any facial rig with a motion capture software would be a powerful tool and elevate
the baseline of what is possible with limited skills and knowledge.

We present a new technique for registering and analyzing facial rigs for an image-based motion
capture algorithm. Additionally, we propose an end-to-end pipeline incorporating a deep learning
approach for unsupervised animation generation, solely based on a single RGB video.
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1 INTRODUCTION 1.1 Thesis Structure

1.1 Thesis Structure

This work is structured into multiple chapters, starting with the current and first chapter, which
is aimed to give a brief introduction into the field and cover the goal of this work. Continuing
with chapter 2, a related work section is provided, where multiple facial deformation methods
are described as well as relevant prior knowledge. Furthermore, our approach and methodology
are described in chapter 3, with details about failed and successful implementations in regard
to the prototype. Subsequently, chapter 4 describes the conducted user study and its results as
well as objective results, such as measurements and outputs taken from the prototype. Chapter 5
discusses the key findings and limitations, interprets and relates them to a recent publication of the
same research area. In the penultimate chapter, the main arguments are summarized and formed
to a conclusion, next to the listing of future research opportunities. The appendix forms the last
chapter, providing additional information about the literature study.
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2 RELATED WORK

2 Related Work

To gather more information about current state-of-the-art approaches and pipelines, a literature
study was conducted and will be covered in the following. Based on the literature, a theoretical
background can be established to create a catalog for the techniques currently used in the facial
motion capture pipeline, as well as ongoing challenges and potential opportunities in the future.
For further details about the literature study, see Section 7.

2.1 Facial Rigging

To realize dynamic 3D characters, animators create a rigging system to control the movement
of the character using different approaches. Such as blendshapes and free-form deformations, as
more direct ways to animate a 3D model, compared to bone- and physically-based approaches. In
the following, all four approaches will be illustrated briefly and compared by relevancy, to give
insight to their respective complexity and put the comparison on a more quantifiable basis.

Blendshape-based rigging for instance, is the primary method used in the reviewed literature
with 6 of the 20 publications using blendshapes and 10 additional papers using systems that fit
into the blendshape category or a hybrid system. The idea behind such approaches is based on the
assumption that the topology of the vertices of a 3D character model (also: mesh) does not change
during their animations. Therefore, a relation between the position of each vertex in the animated
position and the neutral pose can be formulated as delta positions of the respective vertex. Using
a factor to scale the delta positions, the animated pose can be blended linearly with the neutral
pose. This is also referred to as linear blendshape weights [Chandran et al., 2020, Zollhöfer et al.,
2018, Gibet et al., 2011, Ribera et al., 2017]. The delta blendshape system is used in software,
such as Blender and Maya, which are the currently most used software for animation by a group
of experts (6 and 5, out of 14).

In order to have a better insight into the fundamentals of blendshapes, an algebraic notation is
provided, based on [Lewis et al., 2014].

A 3D mesh m comprises, but is not limited to, vertex positions v containing triplets of coor-
dinates (x, y, z) respectively. Since blendshapes affect the vertex positions only, we define a 3D
mesh as a vector of vertex positions for illustration purposes:

m ≡ (v1,v2, ...,vk−1,vk) , (1)

where k is the amount of vertex position vectors in the mesh m. Using the delta blendshape
principle, a blendshape b of the pose p (notated as bp), can be described as the difference of the
neutral mesh m0 and a posed mesh mp or simply as ∆mp, scaled by the respective weight wp:

bp = wp(m0 −mp) = wp∆mp . (2)

Consequently, by using n blendshapes to pose a neutral mesh m0, the final mesh m f inal can be
expressed as

m f inal = m0 +
n

∑
i=1

wi∆mi = m0 +
n

∑
i=1

bi . (3)

Another publication [Savoye, 2018] proposed a similar approach using free-form deformations
(FFD) as an additional way to directly alter the position of vertices in a mesh. Using so-called
"cages" surrounding a 3D mesh, one can move numerous vertices of a mesh by changing the
position of just a few or a single vertex.

For ease of discussion, the algebraic representation of such a system is broken down into a
two-dimensional setting. An example of one of these 2D cages is provided in Figure 2.1.
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2.1 Facial Rigging 2 RELATED WORK

Figure 2.1: A 2D cage of vertices,
affecting a center point [Floater,
2003].

The aim is to alter the position of the vertex v0 using the
surrounding cage vertices vi in a similar way to the previously
discussed blendshapes using a weight w, so that

v0 =
k

∑
i=1

wivi . (4)

The weight wi, according to [Floater, 2003], can be described
as

wi =
ωi

∑
k
j=1 ω j

, (5)

ωi =
tan(αi−1/2)+ tan(αi/2)

∥vi −v0∥
, (6)

where the weights wi and ωi are barycentric coordinates for v0
with respect to v1, ...,vk. The angle αi, as illustrated in Figure 2.1, describes the angle ∠viv0vi+1,
for all k vertices in vi. Only a single publication of the reviewed papers used a form of FFD system
though, implying that it is not a widely used method for facial animation.

Figure 2.2: The mass-spring system of
a physically-based head model by [Kähler
et al., 2003]. Top: Relaxed muscle. Bottom:
Contracted muscle with the affected nodes
marked with #. Adapted graphic according
to [Kähler et al., 2001].

Figure 2.3: The linear contraction (c = 0.5)
of a sphincter muscle fiber to its center.
Adapted graphic according to [Kähler et al.,
2001].

Moving away from proposals where an anima-
tor would influence the vertices’ position directly, a
physically-based approach is described in [Kähler
et al., 2003]. The authors use a variant of a de-
formable, anatomy-based head model initially de-
scribed by [Kähler et al., 2001], where the skin
and muscle movements are simulated using a mass-
spring system.

Using spring-connected nodes to connect the
skin to either facial muscles or the skull, they mimic
the non-linear elastic properties of human skin, as
shown in Figure 2.2. To prevent volume-loss at the
point of contraction, additional springs and nodes
are introduced to counter the force of the springs
from the contracted muscle. These mirrored nodes
also move in the same way as the original nodes,
to ensure that the nodes of the skin mesh moves in
a direction tangential to the skull and muscle sur-
face. This setup provides a more realistic contrac-
tion across the skin mesh of the head model. A sin-
gle node of the skin mesh can influence the position
of one or more vertices, resembling the cage-based
deformations discussed previously.

To give a brief insight of how a muscle contrac-
tion of such a system can look like, a possible alge-
braic notation of a sphincter muscle is provided.

According to [Kähler et al., 2001], a sphinc-
ter muscle’s contraction can be described through
the absolute positions of the nodes (also: control
points) of the muscle:

qi = p∗+(1− c)(pi −p∗) , (7)
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2 RELATED WORK 2.1 Facial Rigging

where p∗ ∈R3 is the center of the muscle, pi are the relaxed control point positions, c is the weight
of the contraction and qi are the control points in a contracted position. The contracting motion
is illustrated in Figure 2.3. Similarly to the FFD above, only a single physics-based approach
was found in the reviewed literature. The rarity of a method like this in consumer media, can
be explained through the increased computing power, necessary to simulate such a spring-based
system. Therefore, the application for physics-based methods lies in areas that need a different
kind of accuracy, such as the medical field.

As the last of the four mentioned approaches to facial rigging by [Orvalho et al., 2012], bone-
based rigging is the second most used practice from the acquired literature. We refer to [Mukun-
dan, 2012], because the literature that mentioned bones for facial animation did not cover the topic
of bone animation theoretically.

Figure 2.4: A facial bone rig created for
motion capture with landmarks [Borshukov
et al., 2006].

Bone-based rigging mimics some of the me-
chanical characteristics of a human skeleton, but
can also be used to move non-rigid areas of the
body. Bones are controllers, placed in 3D space
to alter the position of vertices in relation to the
bone. Even though bones are often viewed as the
connection between two joints of a skeleton, in the
animation field, bones and joints are more closely
related; to a point where they can refer to the same
entity. This is due to the fact that a head bone, for
instance, is translated, rotated and scaled around the
same origin as a head joint. Since there is no other
use case for these controllers in this paper, we will
refer to them as "bones" from now on.

In the first stage of rigging, the animator (or: rigger) places the bones in a pattern that covers
the desired points of interest, also referred to as "facial landmarks". In the case of facial motion
capture with landmarks, a rigger will place bones on all of the landmarks of the actor’s face, like
in Figure 2.4. A skeleton is usually created in a hierarchical tree-like structure, with the root bone
often associated with the position of the character in 3D space. The first bone in the hierarchy, that
belongs to the character, is usually the pelvis bone [Mukundan, 2012], because of its proximity to
the human body’s center of mass. To ensure the coherence of the hierarchy, the pelvis bone is part
of a parent-child relationship with the root bone, where the pelvis is the child of the root bone.
This causes the pelvis bone to translate, rotate and scale with the root bone, while maintaining its
predefined offset. The coordinate space associated with the root bone is called "skeleton space",
which, in the case of the root bone being in the same spot as the character mesh, is the same as
the coordinate space of the mesh. The pelvis bone’s local coordinate space, along with all other
bone’s local coordinate spaces, is referred to as their respective "bone space" [Mukundan, 2012].
Continuing down the hierarchical bone chain, via the spine and the neck, the head bone is the first
relevant bone for this paper. To facilitate the subject matter, we will first focus only on the head
and the jawbone.

In Figure 2.5, the relationship between the jaw and head bone are illustrated. The upper
image shows the default pose of the skeleton (also: rest pose). The lower one shows the same 3D
character with the head tilted downwards and the jaw opened. This is achieved through rotating
the head and jaw bone, by the angles α1 and α2 respectively. The dotted lines in the lower picture
show the resting transformation of the two bones in bone space. The dotted line of the jaw bone is
tilted, because the head bone was moved and in order to maintain its offset as a child of the head,
the jaw bone moved simultaneously.
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2.1 Facial Rigging 2 RELATED WORK

Linear Blend Skinning

To bind vertices to bones, all bones are mapped upon creation to indexes and the bone
index influencing a specific vertex is saved as a new data field in the vertex object.
The assignment of vertices to bones is also referred to as "skinning" [Mukundan, 2012].

Figure 2.5: A 3D character with a head
and a jaw bone. Top: The rest pose of
the skeleton. Bottom: The posed head
and jaw bones.

Figure 2.6: The weight map of the jaw
bone applied to a 3D character.

To illustrate how this mechanism works, we assign a ma-
trix Bi to all of the bones, where i is the index of the re-
spective bone, that defines the transformation from the
bone space to the skeleton space [Mukundan, 2012].

In order to compute the new position, rotation and
scale of a vertex v after the jaw has moved (see Figure
2.5), the resting pose of v, given as the transformation
matrix V0 in the coordinate space of the mesh (≈ skele-
ton space), needs to be transformed by the inverse matrix
of the assigned bone. Since the coordinates of the vertex
are now in the local bone space of the jaw, a joint angle
transformation matrix B′

i, based on the bone with index
i and the angle α2, can be applied. This also returns the
coordinates to the skeleton space, which can be notated
as:

V1 = (B′
iB

−1
i )V0 , (8)

where V1 is the transformation matrix of vertex v in a
posed position [Mukundan, 2012]. However, this applies
only if v is assigned to a single bone only. In the case of
multiple bones affecting the vertex v, a weight value wi

is assigned to each bone with index i, which scales the
influence the respective bone has on v. The final trans-
formed point V1 is obtained as

V1 =

[
n

∑
i=1

wi(B′
iB

−1
i )

]
V0 , (9)

where n is the number of bones affecting the vertex v and

n

∑
i=1

wi = 1 (10)

must apply, according to [Mukundan, 2012]. The pre-
viously covered practice of binding vertices to one or
more bones, that scale their respective influence linearly,
is referred to as "Linear Blend Skinning" and is preva-
lent enough, that all of the animation programs used by
10 experts either do not offer skinning capabilities or use
linear blend skinning. Current animation software, such
as Blender and Maya, possess four bone index entries per
vertex, therefore up to four bones can influence a single
vertex at a time. To accurately assign a weight value for
each bone to every vertex, an artist digitally paints the
vertex weights, often directly onto the 3D mesh. The re-
sulting painted "weight maps" are bone-specific and an
example of a weight map of a jaw bone can be observed
in Figure 2.6. These maps are sometimes displayed in different color spaces, Blender uses a color
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2 RELATED WORK 2.2 Traditional Motion Capture

space similar to the jet color map, where red represents the maximum weight value of 1 and blue
indicates a factor of 0, for instance. Maya on the other hand, uses a linear color map, that maps
a value of 0 to black and a 1 to white. One could also observe, that even though the skinning is
saved in the respective vertex, a weight map also represents the area of influence from the bone on
the 3D mesh.

Although only 3 out of 20 publications used bone-based approaches for facial animation, "A
Facial Rigging Survey" from 2012 [Orvalho et al., 2012] mentions that blendshape rigs are per-
forming worse regarding smooth interpolations between poses, than bone-based rigs. This can
be explained through the usage of landmarks in facial animation, since blendshapes often con-
tain poses of either the whole face or large portions of it, while skeletal animation relies on point
transforms. Thus an animator can ensure that the corner of a 3D character’s mouth, if bound to a
bone controller, stays in the same spot during expression transitions, or interpolates smoothly from
point a to b. A blendshape rig does not offer this kind of fine control. Additionally, blendshapes
can still be incorporated into a bone rig, creating a hybrid rig where the main motion is driven by
a bone rig and skin deformations, such as wrinkles, can be animated through blendshapes.

2.2 Traditional Motion Capture

From the 20 reviewed papers, only 16 contained specifications on the facial motion capture tech-
niques used. Two papers, of the mentioned 16, still used some form of the more traditional
landmark-based facial tracking technique, without learning-based algorithms. The authors of the
first paper [Borshukov et al., 2006] used a synchronized multi-camera setup, incorporating 3 high-
definition RGB cameras and 8 infrared cameras. Through the tracking of the approximately 70
markers placed on the actor’s face, a one-to-one 3D reconstruction of the marker’s positions was
accomplished (as pictured in Figure 2.4). The second publication uses 2 or 4 head mounted cam-
eras (HMC), depending upon the project [Cantwell et al., 2016]. For the reconstruction technique,
they refer to [Bhat et al., 2013], which shows a similar approach to [Borshukov et al., 2006], but
using only a HMC system and incorporating spline-based solving algorithms for the lips and eyes.

Figure 2.7: An actor being scanned in the
Light Stage 5 [Alexander et al., 2009].

Four publications used scan interpolation in a
way to realistically animate faces. The first pa-
per covering the "Digital Emily Project" [Alexan-
der et al., 2009], captured the actor’s face using
a setup of 156 lights and multiple cameras called
the "Light Stage 5" (see Figure 2.7). After mul-
tiple expression scans were captured, the authors
constructed blendshapes using landmarks, drawn
initially on the actor’s face. To track the facial
motion, a proprietary video analysis and anima-
tion system from the company Image Metrics was
utilized. Even though, the authors do not cover
the specifications of the software used within the
project and just call it "Image Metric’s proprietary
video analysis and animation system" [Alexander
et al., 2009]. After some investigation, we found
out that the company Image Metrics sold their fa-
cial animation branch to a company called "Faceware Technologies, Inc.". The earliest ver-
sion of the facial analyzer software (to the best of our knowledge) with the version number
1.0.0.13307, was found in a promotional video from 2012. Based on the video and the infor-
mation gathered from a version we got to try (version number 3.2.0.420), we make multiple
assumptions, one of them being that a similar system was used on the "Digital Emily Project".
The facial analyzing software tracks the facial motion without markers, but using a face’s nat-
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ural features to create curves, that can later on be brought into proportion with facial poses.
Therefore, an animator needs to create only a small number of key poses, that are interpolated
based on the curves of the tracked points. The markerless tracking of the facial landmarks is
illustrated in Figure 2.8, which is a screenshot of the Faceware Analyzer 3 software’s output.

Figure 2.8: A screenshot of the Face-
ware Analyzer 3 software tracking an
actor’s face.

Figure 2.9: The optical flow of a
steady camera with moving people
[Patait, 2019].

The rest of the non-learning-based approaches us-
ing scans, not mentioned yet, all used a system based
on some form of optical flow. Optical flow is a 2D rep-
resentation of motion information, where a single or a
block of pixels of an image are tracked and saved as a
2D vector carrying velocity information (shown in green
in Figure 2.9). All of the three remaining papers used
a similar approach [von der Pahlen et al., 2014, Fyffe
et al., 2015, Andrus et al., 2017], in a sense that all sys-
tems used optical flow to deform the face of a 3D char-
acter, using projection algorithms to transfer the 2D data
onto the 3D model. Although not specified in [Andrus
et al., 2017], the two other publications relied on a multi-
camera setup, similar to the Light Stage 5 in Figure 2.7,
to support the optical flow algorithm and achieve more
accurate results. Though the authors of [Fyffe et al.,
2015] state that motion transfer from one character to
another, using their system, remains subject of future re-
search.

2.3 Learning-based Approaches

Approximately two-thirds (10 out of 16) of the re-
viewed papers incorporated some form of learning- or
regression-based algorithm. For ease of discussion, we
use regression-based algorithms interchangeably with
learning-based algorithms and refer to both as the same
entity. To better distinguish between the propositions,
we categorize them in three groups: landmark mapping, geometry regression and image-based
mapping. Beginning with the first and biggest category, two papers [Moser et al., 2018, Hendler
et al., 2018] point to a third paper [Moser et al., 2017] of the selection, using the same system, but
respectively improving it in their proposal. The base system, described in [Moser et al., 2017], is
based off of the works from [Bermano et al., 2014] and [Bickel et al., 2008]. We assume from the
information of the last three mentioned references, that the system driving the faces works off of a
regression-based mapping between a low-resolution input (landmarks or rig) and a high-resolution
geometry output. The mapping is learned based on a dataset of facial scans, allowing the model to
generate realistic faces, based on the input from head mounted cameras, that were only possible
in seated capture techniques before [Moser et al., 2017]. Another regression-based algorithm is
covered in [Gibet et al., 2011], where the authors map the positions of facial landmarks on an
actor’s face to blendshape weights, using Gaussian Process Regression. Another proposal is an
algorithm that maps 3D tracked facial landmarks between either an actor and a rig or between
different rigs, with special attention to the range of motion of the respective face [Ribera et al.,
2017]. The authors achieve the mentioned goal, by learning the actor’s expression range from an
initially captured training sequence, for a blendshape rig. The last of the learning-based landmark
mapping approaches only focuses on the jaw position, but does so through learning the position of
multiple points on an anatomical jaw bone, using facial landmarks [Zoss et al., 2019]. The authors
trained a non-linear mapping using a dataset containing images of varying jaw poses and jaw bone
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positions.
Another category of learning-based algorithms is the geometry regression. In the first instance,

researchers used a regression framework, initially described in [Cao et al., 2012], that regresses a
contour onto the eyelids for improved tracking [Bermano et al., 2015]. The authors also use optical
flow, as described earlier, among other techniques. One other geometry-based learning algorithm
is presented in [Chandran et al., 2020]. The authors use deep neural networks to generate expres-
sive 3D faces, with the identity and the expression of the face decoupled from one another. This
distinction allows facial motion tracking capabilities, through the learning of a mapping between
the 2D landmarks and the pre-trained network, generating believable human faces [Chandran et al.,
2020].

Finally, image-based regression is used in two other works. In the first one, the authors
trained a regressor using synthesized poses of a blendshape character rig from the perform-
ing actor, from the perspective of a head mounted camera. Since the rig will be driven by
a video of the actor performing the desired expressions, the regressor is able to map them to
the learned poses and outputs weights for the blendshapes, without the usage of landmarks.
This purely image-driven approach also comes with the advantage of the whole face being
used as a high-resolution input, compared to low-resolution inputs like trackers or landmarks.

Figure 2.10: Failure cases of the algorithm
proposed in [Moser et al., 2021].

The last publication discussed in this section de-
serves special attention, compared to the rest of the
discussed literature in this section, because of its
recency and the fact that it is closely related to the
work in this paper. This is due to the fact that it
was published in the same month as the process-
ing period of this thesis ended. "Semi-supervised
video-driven facial animation transfer for produc-
tion" proposes an algorithm for automatic facial
motion capture, using monocular RGB video data
and a learning-based approach [Moser et al., 2021].
Their method already meets most of the require-
ments and tasks of this thesis, through incorporating
an algorithm that uses an actor’s expressions from
an input video to generate a video of the soon-to-be-animated 3D character, performing the same
facial movements. But it fails in the case of lighting, background and actor changes, as well as
field of view, clothing and occlusion, as seen in Figure 2.10 [Moser et al., 2021]. The publica-
tion itself illustrates however, the relevancy and activity of this research field and that there is still
plenty to improve.

Deep Neural Networks

Figure 2.11: Schematic diagram of a neu-
ron, adapted from [Mehlig, 2021].

For further elaboration, a brief overview of deep
neural networks (including deepfake algorithms) is
provided in the following, based on an up-to-date
textbook released in October 2021 [Mehlig, 2021].
The general goal of neural network architectures is
to provide a computational model, inspired by the
basic unit of the nervous system in a human brain,
the neuron. The first iteration of a simulated neu-
ron was the McCulloch-Pitts neuron, according to
the book. The concept is to make the neuron switch
between two states (active and inactive), depending
on some arbitrary input in the form of one or multiple weighted scalars and a threshold. Even
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though this configuration is often referred to as a "perceptron", the authors also refer to it as the
McCulloch-Pitts neuron [Mehlig, 2021]. Since the model performs repeated computations in dis-
crete time steps t, the resulting state s (or: output) of the neuron with index i after one time step is
notated as si(t+1). As pictured in Figure 2.11, the output of the neuron can be formally expressed
as:

si(t +1) = sgn

[(
N

∑
j=1

wi js j(t)

)
−θi

]
, (11)

where θi is the threshold respective to neuron i and N is the number of input neurons [Mehlig,
2021]. The function name sgn(b) refers to the signum function:

sgn(b) =

{
−1, b < 0 ,
+1, b ≥ 0 .

(12)

The argument of the signum function, shown in Equation 11, later labeled as b, is also referred to
as the "local field" of the neuron. It consists of the sum of the states of the input neurons, scaled
by their respective weights and adding the threshold to the result [Mehlig, 2021]. To combat fluc-
tuations or other undesired effects in a network of neurons, other so-called "activation functions"
are used, such as sigmoid(b) or tanh(b), replacing the signum function in Equation 11 [Mehlig,
2021]. The negative threshold −θ is also referred to as the bias of the neuron, by machine learning
libraries such as PyTorch. To make the network learn, an error of the current network needs to
be computed. Using the example given in the book, a distance dv, where v indicates an already
known result of the network usually provided by a dataset, can be calculated. The predicted output
x and the desired output x(v) are subtracted from each other and subsequently squared, resulting in
a positive number, indicating the magnitude of difference between x(v) and x. This is also known
as computing the error (or: loss) of a network, using the mean squared error loss function [Mehlig,
2021]:

dv = (x− x(v))2 . (13)

Since x represents the last neuron’s output, calculated through at least one iteration of Equa-
tion 11, the computed error dv can be used to train the variable parameters of the neural net-
work, consisting of the weights wi j and the bias −θi of the respective neurons. This pro-
cess is also called "backpropagation" and computes gradients for all parameters to minimize
the loss dv, making use of algorithms such as stochastic gradient descent [Mehlig, 2021].

Figure 2.12: An example of a 2D convolution using a 3x3 ker-
nel and a stride of 1. The initial input image (A) of size 8x8 pix-
els is convolved into two feature maps sized 6x6 (B). Followed
by two more convolutions yielding four 4x4 (C) and eight 2x2
feature maps (D) respectively. The last operation flattens the
feature maps into a one-dimensional vector of size 32 (E).

The specification in the name
"deep learning" and "deep neu-
ral network", compared to a
generic neural network, derives
from the higher amount of so-
called "hidden layers", com-
pared to artificial neural net-
works (ANN). A hidden layer
is defined as a computational
layer between the input and out-
put layer of a neural network
[Mehlig, 2021].

Deep learning based on
higher dimensional data, such as grayscale or RGB images, introduced a set of new challenges.
Networks in which the neurons of one layer are connected to all neurons of the following layer,
known as "fully connected" neural networks, have higher computational and memory requirements
compared to so-called "convolutional neural networks" (CNN) [Mehlig, 2021]. A CNN takes ad-
vantage of a principle observed in the human brain. The principle being, that neurons dedicated
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for image recognition are designed to recognize local features such as edges or corners in images.
These so-called "feature maps" are extracted using filters that are referred to as "kernels", in an
operation named "convolution" (shown in Figure 2.12). Since an image often contains the same
feature multiple times, the same kernel can be reused, reducing the total amount of neurons of the
network. This results in another advantage; since there are fewer neurons in a CNN, also due to the
usage of pooling layers reducing the size of feature maps, compared to a fully connected neural
network, the network is less prone to overfitting [Mehlig, 2021] and requires fewer computations.
Through the usage of convolutional layers (among others), that apply kernels to an input image,
followed by one or more fully connected layers, certain predictions can be made about the input
image by reducing the size of the input to a single output value.

Figure 2.13: An illustration of an op-
timally trained autoencoder. The input
and output (Input’) are both marked in
red, since they are equal.

Taking advantage of the mentioned and other con-
cepts, efficient encodings of images can be learned
through so-called "autoencoders". As shown in Figure
2.12, a CNN is capable of reducing the amount and di-
mension of input variables to achieve a specific output
array of numbers, in the case of autoencoders this is re-
ferred to as the "encoding" of the image. Therefore the
CNN is often referred to as the "encoder". The other part
of an autoencoder consists of a "decoder", which maps
the encoded image back to the original input [Mehlig,
2021]. By comparing the output of the decoder with the
input of the encoder, a loss can be computed (see Figure 2.13).

Another neural network architecture relevant to this work is the "generative adversarial net-
work" (GAN). Consisting of two multilayer perceptrons, the "generator" and the "discriminator".
Using, besides others, a noise input, the generator generates samples of the desired data type.
The discriminator receives either a real sample of the ground truth or a generated sample (fake
sample) from the generator as an input and needs to differentiates whether it is a real or fake sam-
ple [Goodfellow et al., 2014]. This can also be expressed as a two-player minimax game, where
the participants try to outdo each other.

Making use of advancements in the research field of deep learning, neural face swapping
approaches, as mentioned in [Moser et al., 2021], have been developed. The so-called "deepfake"
algorithms, a mixture of the words "deep" from deep learning and "fake", are able to generate
synthesized image or video data, where the likeness of a person is replaced with another using
a deep neural network. To keep this section concise, we will not elaborate further on the inner
workings of a deepfake algorithm, but show that they are capable of transferring facial motion from
one identity to another, even with varying video input. As seen in Figure 2.14, the algorithm takes
a neutral frame of the target face and a video of an actor, meant to be puppeteering the target face
(puppeteering deepfake algorithm). The result is a synthesized video, where the facial movements
of the actor are transferred correctly onto the target face, even with varying backgrounds, actors
and cropping. This 2D mapping preserves a high amount of detail compared to landmarks and
might be interesting to explore.

To summarize the potential for improvement, as described in the literature: [Fyffe et al., 2015]
mentions that frame-to-frame motion analysis systems, such as optical flow algorithms, are sub-
ject to the accumulation of error over time, or what they refer to as "drift". Since an optical
flow system is used in other works [Andrus et al., 2017, von der Pahlen et al., 2014, Alexander
et al., 2009], we assume that they encountered the problem as well. Though the works of [Fyffe
et al., 2015] aimed at minimizing the drift, which they achieved according to the paper. Even
though the authors treat the problem as solved, the system still relies on facial scans and does
not solve the issue of a high amount of required pre-generated data. Remaining on the topic at
hand, [McDonagh et al., 2016] describes that machine learning algorithms that are trained on an
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actor’s face, either are not able to extrapolate from capture data, acquired in different camera or
lighting setups, or require an unbearable amount of labor to capture and label a sufficient dataset.

Figure 2.14: An example of a puppeteering deepfake
algorithm, based on [Siarohin et al., 2019]. Neutral
frame: The neutral face of the target character. Top
row: Frames taken from a video of an actor’s perfor-
mance. Bottom row: Synthesized video data, based
on the neutral frame and the respective driving video.

A learning-based algorithm, not reliant
on a dataset, might be an opportunity
worth exploring. Similarly, [Moser et al.,
2021] mention that their deep learning al-
gorithm degenerates in unseen conditions
and name similar challenges as [McDon-
agh et al., 2016], such as different cloth-
ing of the actor, background changes,
changes in lighting and field of view,
as well as partial occlusion, the latter
also being mentioned in [Zollhöfer et al.,
2018]. Therefore, either a sufficiently
trained algorithm or a system, that works
independently from the actor’s charac-
teristics and is strictly expression-based,
would be required. Three other pub-
lications mention, among others, prob-
lems such as an insufficient amount of
algorithm training [Zoss et al., 2019]
and noisy or even incomplete data [Gibet
et al., 2011, Ribera et al., 2017]. Fi-
nally, facial motion capture data can lack
expressiveness, compared to the actor’s
performance [Gibet et al., 2011] and re-
quires extensive involvement of the ani-
mator. This can make the entire process
time consuming and expensive, and is
therefore usually employed only for main
characters [Moser et al., 2018]. A method
reducing the amount of manual labor re-
quired from the animator, seems to be the
next step. On the note of manual tweak-
ing, [Gibet et al., 2011] describe the issue of the blendshape data being directly linked to the facial
performance capture. Consequently, an approach that allows mapping to a bone-based rig might
be desirable, allowing the animator to tweak specific bone positions after the capture.

The contributions of this thesis in respect to the above are:

• For the first time to the best of our knowledge, an unsupervised image-based learning al-
gorithm for retargeting facial animations from a frame of a processed RGB video to a 3D
character, that does not rely on an actor-specific initialization or training and only uses an
automatically generated weight map data structure with no additional datasets required.

• A fully automated end-to-end pipeline for registering generic facial rigs for processing with
a neural network architecture and producing animations in the form of bone transforms.

• A high-resolution method utilizing a generic render engine for comparing facial poses and
deformations, independent from low-resolution facial representations, such as landmarks.
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Figure 3.1: An overview of the proposed pipeline, the dashed box representing the proposed
AFRRMC algorithm.

3 Methodology

We describe below our prototype (hereafter also referred to as the AFRRMC algorithm) and its
development during the research process with reference to the theoretical background discussed
earlier. The animation software used to accomplish the given tasks is Blender release version
2.93.7. The different stages of the conceptualization process of our approach, utilizing monocular
RGB videos to drive facial animations independently from 3D character and actor, will be covered
below. Subsequently, descriptions of the different stages of our program, divided into thematic
categories, will be provided.

3.1 Conceptual Approach

The original concept emerged after a discussion with an expert in the animation field (4 years of
professional experience) on the topic of workflow optimizations and differs from the final concept
in a number of aspects, which are described in Section 3.1.3.

3.1.1 Initial Concepts

At first, the idea was to use a step-based algorithm that was able to move the bones of a facial
rig gradually, based on an image comparison algorithm which computes an error map using two
input images and a threshold. The output of the algorithm is the amount of differing pixels, based
on the threshold, and an image, where the pixels outside of the range of the threshold are colored
in red and the rest in white. The input images of such an algorithm would need to be one image
representing the current state of the face in the animation software and another image showing the
target expression on the same character. The latter was achieved through the usage of a deepfake
algorithm, which successfully mapped the motion of an arbitrary actor’s face onto a neutral face
image, taken with a virtual camera inside the animation software (in our case: Blender). Using
this "area of discrepancy" concept and having the mechanisms of bone weight maps in mind, a
design where a bone is chosen based off of the overlap between the area of discrepancy and the
area of influence of the bone, was worked out. The design converted the color space (jet) of the
weight maps rendered from a front facing camera perspective, in a white (0) and red (1) color
space. Thereupon the images, we refer to as "impact maps", were combined in a hierarchical
way that matched the skeleton hierarchy. For instance, the impact map of the head bone, also
contained all of the other red pixels of the facial bones, because they are the children of the head
bone in our example rig. After that, the impact maps would be saved in a table, mapped to the
respective bone name, for later access. The last step of the preprocessing stage of the concept
was a face stabilization and background removal process. The background removal was initially
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pictured as a face segmentation algorithm, resulting in a target image, containing only the face of
the synthesized character expression.

Beginning the execution loop, the concept ought to run the image comparison algorithm, re-
trieving the amount of wrong pixels in between the image of the animation software and the target
image. If the number would be within a certain threshold, the execution would be stopped imme-
diately after. Otherwise, the program would continue by searching for the best matching impact
map from the impact table and an algorithm would determine the next best bone transform using
small steps to iteratively converge to the unknown target transform. During each step the algorithm
would be guiding itself in the right direction using the image comparison algorithm’s outputs.

3.1.2 Discarded Concept

Figure 3.2: One sample pair of the cap-
tured depth dataset using a Microsoft
Kinect v2 sensor.

While this work does not include approaches using
depth sensors, we explored the possibility of training a
neural network using a dataset of captured depth maps
(as shown in Figure 3.2. Though, the algorithm was
not able to extrapolate from real-world datasets to syn-
thesized video footage of a 3D character, not being
able to open the mouth of the synthesized face and
other anomalies. This lead to the approach being less
appealing than the initial concept.

3.1.3 Final Concept

Figure 3.3: A diagram showing the sim-
ilarity of the loss, in the case of an impact
map containing all of its children (red) or
not (blue).

Although the initial concept already contained a basic
framework of the algorithm, many sections required
revisions during the development process. For in-
stance, the most substantial redesign was that the bone
transform algorithm would use a learning-based al-
gorithm and the concept of a stepping algorithm was
scrapped and replaced by a neural network training it-
self gradually using its own predictions (justifications
are presented in Section 3.4). This also changed the
preprocess design, since the color space conversion
would not need to match a color space anymore and
was therefore revised into a single-channel conversion
(shown in Figure 3.4). Furthermore, the summation
of the impact maps proved to not affect the network
significantly (as shown in Figure 3.3), hence the addi-
tion was removed. The background removal step was
also discarded, because in the way that the algorithm
would train itself, every iteration of the training would
require a facial segmentation and background removal
component, which would disproportionately reduce performance relative to the difference in qual-
ity. Finally, the exit of the execution loop, based on the error pixel count, was removed and
replaced by a method that would allow the user to specify the amount of iterations and stop the
algorithm at any point, while being able to review the current state of the training through data
output, such as images and curves.
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3.2 Image Processing

Figure 3.4: Left: The rendered weight map
of the head bone, displayed in a jet colormap
by Blender. Right: Impact map, converted
from weight map.

While there are multiple types of image processing
methods involved in the AFRRMC prototype, the
deepfake algorithm takes up the biggest part of the
computations. For the purpose of this work we as-
sume that deepfake algorithms are readily available.
The algorithm used in this project is based on the
work from [Siarohin et al., 2019] and was chosen
due to its availability at the time. It is not incor-
porated into the prototype and can therefore be ex-
changed without modifications to the AFRRMC al-
gorithm. The AFRRMC algorithm’s requirements
of the input is merely a frame of a deepfake, pro-
vided by the user, opening up future opportunities.
For instance, an improved deepfake algorithm or potentially a different kind of synthesized im-
age generators, such as body motion transfer algorithms, could be utilized in the same manner.
However, we focus on facial animation and after providing the chosen deepfake algorithm with a
rendered neutral image and a target video, we extract a frame from the resulting synthesized video
(as seen in Figure 2.14) and feed it as an input to the AFRRMC prototype. We will refer to this
input image as the "target image" from now on.

Our system begins with the rig registration process (as shown in Figure 3.1), described in
more detail in the next section, and saves the extracted weight maps in a tree-like data structure,
compared to the initial concept, aimed to use a table. This change enables us to treat the data in a
hierarchical way, similar to the layout of the registered skeleton. Subsequently, the algorithm con-
verts the jet color space of the rendered weight maps into a grayscale picture (seen in Figure 3.4)
and aligns it to the neutral frame rendered in the beginning. This is achieved by finding the lowest
overlapping error, computed by the sum of the absolute pixel difference of the two images, while
iterating through the image coordinates. This could be greatly improved in terms of quality and
speed, but since this stage is only executed once during the initialization, the speed was sufficient
for our needs. Following down the execution chain, the next task requiring image processing is to
blur both the target image and the current state of the character’s face, to add a certain amount of
robustness to the network. This is achieved through a Gaussian smoothing function with a kernel
size of 7 and a sigma value of 5. Finally, the image comparison algorithm, originally intended to
evaluate the quality of the algorithm’s output, was removed, since our prototype uses a neural net-
work to predict bone transforms, based on a loss function that incorporates an algebraic equivalent
of an image comparison. This will be covered in Section 3.5.4.

3.3 Blender Setup

To be able to compare a deepfake of an actor and a rendered image of a 3D character, the ren-
dering quality of our animation software needs to meet a certain standard, to match the deepfake
algorithm’s aesthetics. For example, we observed that the computation of shadows is necessary,
because the deepfake generated the inside of our 3D character’s mouth as a relatively dark color.
To match the look of the synthesized video and enable a color-matching method, we used Blender’s
OpenGL renderer called "Workbench" to maximize performance, while maintaining some artist
control over the character’s external characteristics and the lighting of the 3D scene. The vir-
tual camera used to perform the rendering is placed in front of the face and set to a resolution of
256x256 pixels, matching the output size of the deepfake algorithm.

As mentioned previously, the algorithm starts with the rig registration by automatically joining
all 3D meshes loaded into the scene, that possess an armature modifier; indicating that they are part
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of the character rig. Subsequently, the prototype switches to the "weight paint" mode and saves all
bone names in a list using a user-provided input of the head bone name, which will later be used
to build the previously mentioned tree-like data structure, we refer to as the "impact tree". Using
the list of facial bones, the prototype iterates through all of them, rendering their respective weight
map from the perspective of the camera and converting them into impact maps, as described above
(and seen in Figure 3.4). The final steps of the Blender initialization includes merging the bone
list and weight maps into the previously mentioned impact tree and switching the viewport back
to "object mode" in which facial expressions can be rendered for the training.

3.4 Classical Algorithm

Figure 3.5: Top: The
frame used to drive the
deepfake and thus the rest
of the algorithms. Middle:
The classical algorithm af-
ter reaching a step size of
1.198 · 10−5. Bottom: The
neural algorithm after 150
iterations.

In contrast to the final approach, the initial concept incorporated
a step-based algorithm that was aimed to converge to an optimal
bone placement. We initially developed the later discarded algo-
rithm, which we refer to as the "approximator" and cover it in the
following.

Iterating through each of the six axes, three for location and rota-
tion respectively, the algorithm divides a provided maximum search
space into two intervals of the same size, yielding the minimum,
maximum and center point of the respective axis. For each of the
retrieved points, the algorithm renders an image of the character’s
face, posed with each of the data point as input. Then the algorithm
compares the rendered image to the target image via a pixel differ-
ence and saves it as an error for each point. Once the lowest error of
the three subtractions is computed, the search space is halved and the
middle of the search space is set to the point with the lowest error.
This way of computing an optimum delivered decent results sooner
than the neural network training. In comparison, the AFRRMC pro-
totype delivered a posed face, roughly matching the actor’s image
(as seen at the bottom of Figure 3.5) after 150 iterations, lasting 754
seconds on an NVIDIA GeForce GTX 1080 Ti GPU and an Intel®
Core™ i7-6800K CPU in total. Using the same hardware and the
approximator algorithm, the image in the middle was computed in
54 iterations, taking 83.6 seconds to compute. Although the neural
network algorithm was not fully implemented in the design phase
of the approximator, we expected better results from a neural net-
work approach. One justification for this statement is the difference
in computation and extrapolation. The approximator is unable to ex-
trapolate from previously computed scenarios and also not capable
of reaching specific poses that the neural network can, due to ex-
ploration limitations in the axes value computation. Additionally, a
trained neural network’s advantages are not limited to extrapolation
based on unseen data, but can also execute faster than the approx-
imator since no rendering is required to generate the desired bone
transforms, decreasing the computation time (in our case to: 1.218
seconds). Consequently, the concept of a classical algorithm was
discarded and a neural network approach was chosen.

3.5 Neural Network Design

The neural network design went through multiple design stages and
concept changes, which was due to our relatively low experience
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in the beginning of the development process. The largest challenge
posed the dependency of the loss calculation on the Blender renderer. To the best of our knowl-
edge, there are no differentiable renderers that allow the usage of bone controllers from generic
3D characters and therefore we needed to find a workaround solution. For the implementation
of the neural networks, the open source machine learning library PyTorch [Paszke et al., 2019]
was utilized. In the following, two failed attempts (Sections 3.5.1 and 3.5.2) and the final neural
network design (Section 3.5.3) are described.

3.5.1 Generative Adversarial Network

The first failed approach regarding a neural network-based prototype, was to use a convolutional
neural network (CNN) as the generator inside of a generative adversarial network (GAN). In our
case, the CNN reduced four inputs, the target image, viewport image, impact image and a noise
vector, to a transform vector of size 6, relating to the amount of axes. The added noise vector
was intended to ensure the learning process of the GAN. The idea behind using a GAN was that
we made the assumption that the generator and discriminator are independent from each other,
therefore allowing learning directly based on the rendered viewport image. Though, a generator
learns through chaining the computations of the generator to the discriminator [Goodfellow et al.,
2014] and must therefore be differentiable at any point of the calculations, requiring a change in
concept.

3.5.2 Convolutional Neural Network

Figure 3.6: Top: The training algo-
rithm, utilizing a pre-generated image
and transform vector pair. Bottom: The
prediction step, where a new training
pair is generated using the target im-
age.

Moving away from an image-to-image learning-based
algorithm, we designed a CNN (based on wrong assump-
tions) aimed to learn from its own predictions, inspired
by the step-based approach described in Section 3.4. The
algorithm (as shown in Figure 3.6) used a single CNN,
which learned a provided transform vector of size 6 from
an input image, being a rendering of the 3D character’s
face. The image would be swapped out every x iterations
by the target deepfake image, to make the network pre-
dict a new transform vector, which would then be used
with the resulting rendered image to train the algorithm
again. This algorithm was aimed to make the network
gradually discover the most optimal face pose. The ap-
proach also intended to skip the need for the Blender
renderer being incorporated into the algorithm’s back-
propagation, through the direct learning of a vector from
an image. To initialize the network, we assumed (at the
time) it would be sufficient to let the algorithm render an
image based on a transform vector filled with zeroes and
train it for 100 iterations. The loss function for the loss
LCNN used in the training can be expressed as:

LCNN =
6

∑
i=1

di , (14)

d = |tout − ttarget | , (15)

where ttarget is the provided target transform vector, tout is the predicted transform vector from the
network and d is the absolute difference between the vectors. The final loss LCNN is calculated by
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the summation of the elements of d, where di is an element of d with index i (specifically: the axis
with number i).

Once the initialization stage was completed, the algorithm proceeded with the training loop.
The concept of the training revolved around the idea of gradually training the network for a spec-
ified amount of times, using randomly generated target vectors. At the start of a single training
iteration, the algorithm looped for 200 iterations through a "sub-training loop". First, the last pre-
diction of the network and a random offset (in our case between -0.2 and 0.2) were added to each
of the predicted vector’s axes and an image, using the generated transform vector as the input for
Blender, was rendered. The rendered image would now be treated as the target image and the
network was trained by a single forward and backward pass, using the image as an input and the
previously generated transform vector as a target, ending one sub-training loop. Once the inner
loop finished, the actual target image (deepfake) was used to predict a new transform vector, by
a forward pass through the CNN. Similar to the sub-training loop, a new image was rendered
based on the transform vector and the network was subsequently trained for a single iteration us-
ing the latest computed image and vector. This step concluded the training loop of the CNN-based
algorithm.

However, the network failed to deliver sufficient results, which we assume is due to a number
of problems. One of them being that the network did not learn any meaningful information during
the initialization stage, since it only learned to produce a zero vector based on a single image.
Additionally, the training loop did not incorporate a batch learning implementation that combined
multiple error calculations and instead learned from a single image and vector pair during the
respective iteration. This was desirable to enable a one-shot algorithm, not requiring a dataset.
The neural network design of a single CNN was scrapped during the concept development, since
another network architecture (described in the following section) seemed to better suit the task.

3.5.3 Autoencoder

Having encountered multiple challenges with incorporating the Blender renderer into the neu-
ral network passes, the concept of using an autoencoder established itself during the pro-
totyping process. If we formulate our task differently: we try to convert from image
data (the target image) to another data type (the bone transform) and back into an im-
age (by rendering an image using Blender), to then compare it to the target image. As
previously described, an autoencoder learns a specific encoding of an input, then maps
the encoding back to the input [Mehlig, 2021] and compares it using a loss function.

Figure 3.7: An example of how an autoencoder
can be used to treat non-differentiable branches
in a neural network.

This relation between our task and the archi-
tecture of an autoencoder was not entirely clear
to us from the beginning of the implementa-
tion. We first assumed that it would need to be
possible to backpropagate the Blender renderer
step of the network, to make the forward pass
differentiable. Though, we eventually moved
away from using only the Blender renderer as a
way to backpropagate the network and started
prototyping with the idea of creating a second
network, mimicking the computations of the
rendering in Blender. As shown in Figure 3.7,
the target image (Input) can be encoded using
a CNN (Encoder) into a transform vector (En-
coding) and then serve as an input for Blender to render an image (Render). The same encoding
(marked in green) can be used as the input for a second network (Decoder), aimed to produce an
image similar to the render from Blender (Render’). Due to their similarity (but not equality) be-
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tween the Render and Render’, both are highlighted in blue. After an element-wise addition of the
two images and a subsequent division by two, the resulting output (Input’) should, in an optimal
scenario, be close to the target image (Input). This relation is highlighted in red.

Operations Parameters
Conv2d (kernel_size, stride, padding)

MaxPool2d (kernel_size, stride, padding)
AvgPool2d (kernel_size, stride, padding)

AdaptiveAvgPool2d (output_size)
Linear (in_features, out_features)

Table 3.1: PyTorch commands, such as Conv2d for 2D
convolutional layers, and their most relevant parameters.

Layers DenseNet-Encoder
Convolution Conv2d(7×7, 2, 3)

Pooling MaxPool2d(3×3, 2, 1)
Dense Block

(1)

[
Conv2d(1×1, 1, 0)
Conv2d(3×3, 1, 1)

]
×4

Transition Layer Conv2d(1×1, 1, 0)
(1) AvgPool2d(2×2, 2, 0)

Dense Block
(2)

[
Conv2d(1×1, 1, 0)
Conv2d(3×3, 1, 1)

]
×8

Transition Layer Conv2d(1×1, 1, 0)
(2) AvgPool2d(2×2, 2, 0)

Dense Block
(3)

[
Conv2d(1×1, 1, 0)
Conv2d(3×3, 1, 1)

]
×16

Transition Layer Conv2d(1×1, 1, 0)
(3) AvgPool2d(2×2, 2, 0)

Dense Block
(4)

[
Conv2d(1×1, 1, 0)
Conv2d(3×3, 1, 1)

]
×12

Classification
Layer

AdaptiveAvgPool2d(1×1)
Linear(98, 6)

Table 3.2: The architecture of AFRRMC’s encoder split
into the different layers.

Initially the autoencoder design in-
corporated a CNN as the encoder, con-
sisting of seven convolutional layers.
The first six convolutions used a fil-
ter (or kernel) of size 4×4 and a stride
of 2 and a padding parameter of 1.
Only the last convolution used differ-
ent values for the stride and padding,
because the last convolutional layer
was used as a form of classification.
The seventh layer reduced the feature
count to six features, relating to the re-
quired six values for the transform vec-
tor, by using a stride of 1 and zero-
padding. Though the results were not
satisfying our needs, even with dif-
ferent classification layer implemen-
tations and we looked into other ar-
chitectures to improve the learning-
based algorithm. The works of [Huang
et al., 2016] showed that neural net-
works based on their so-called Dense
Convolutional Network (DenseNet) ar-
chitecture tend to perform better with
both, increased and decreased parame-
ter count and computations. Therefore
we implemented a DenseNet as the en-
coder, which will be covered in the fol-
lowing.

DenseNet The concept of a
DenseNet is based on the idea of
adding additional "skip connections"
between multiple layers, by incorpo-
rating the output of one layer into the
input of another layer of the network.
Skip connections are not a novel
concept in DenseNets though, as the predecessor of DenseNets, "Residual Networks" (ResNets)
already makes extensive use of them [He et al., 2015]. In the case of a ResNet, skip connections
are implemented to skip one or more network layers by adding the output of the previous layer
to the output of the last skipped layer. This network architecture has proven to be able to train
deeper neural networks with higher accuracy and less complexity compared to so-called "VGG"
networks [He et al., 2015]. DenseNets build on that concept by connecting the output of every
layer with the output of every consecutive layer, using skip connections. Though, the skip
connections do not add the outputs together, they concatenate them. Furthermore, the size of
the feature maps (e.g. the output of a convolutional layer) increases drastically, decreasing the
performance of the network. Therefore the authors of [Huang et al., 2016] split the network layers
into what they refer to as "Dense Blocks" and add transitional layers in between them, that reduce
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the feature map size through a convolutional layer and a pooling layer.
The DenseNet implementation of the AFRRMC encoder is based on an example file from a

PyTorch repository [PyTorch, 2022] with alterations from [Arora, 2020]. The architecture of the
encoder is described in Table 3.2, where the layers and operations are listed using their respective
PyTorch method names and parameters. Table 3.1 lists the layer names used in the architectural
table and their most relevant parameter names.

The decoder of the AFRRMC algorithm consists of seven fractionally-strided convolutional
layers. While these layers do not compute a true inverse of a convolutional layer, they are also
often referred to as deconvolution operations. In contrast to convolutional layers, they are able to
increase the dimensions of an image, while decreasing the feature map size. Therefore they can be
used to reverse convolutional operations and are subsequently used in the decoder design of this
work. All except for the first of the layers utilize a kernel of size 4×4, stride of 2 and a padding
of 1. Only the first "deconvolutional" layer uses a stride of 1 and a padding of 0.

3.5.4 Loss Functions

In order to make the network learn, multiple loss functions were designed in order to improve the
performance and precision of the network. Three different variants in chronological order will be
described in the following.

The initial loss design was based on two forward passes of the encoder, resulting into two
transform vectors t1 and t2. The function computing the loss loss1 can be abstracted and expressed
through the following algebraic notation:

loss1 =
m

∑
x=1

Ix +a
6

∑
y=1

vy +ϒ(t1)+ϒ(t2)+
n

∑
z=1

Lz , (16)

I = |2T− (F+R)| , (17)

v = |t1 − t2| , (18)

L = |F−R| , (19)

where the matrix I is computed by the absolute of the subtraction of the target image T times two
and the addition of the rendered image R and the decoder’s image F as notated in Equation 17.
The vector v is the absolute of the subtraction of the two transform vectors t1 and t2. The factor a
consists of the maximum error value for the sum of the comparison image matrix, being 131072,
divided by the sum of all elements of the maximum search space vector, amounting to 39.42477.
This was aimed to increase the image-based error while the predicted transform was outside of the
search space. The added function ϒ(b) represents another function that increases the error of the
network proportionally to the distance of b from the maximum search space, while the sum of the
matrix L was added to increase the decoder’s performance.

The second loss design moved away from the idea of having a single loss function for both
the decoder and encoder, which improved the decoder’s performance drastically. The abstracted
loss functions loss_e2 for the encoder and loss_d2 for the decoder, can be notated through the
following:

loss_e2 =
m

∑
x=1

Ix , where (20)

I =

∣∣∣∣∣
(

T− F+R
2

)2

+(R−F)2

∣∣∣∣∣ and (21)
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loss_d2 =
n

∑
z=1

Lz , where (22)

L = |(2(F−R))2| . (23)

Though, we noticed that the encoder was able to improve its precision through the concept of
reusing predicted values as targets, as in the initial loss function loss1. Leading to the encoder’s
following and final loss function loss_e3:

loss_e3 =

(
m

∑
x=1

Ix

)2

+
6

∑
y=1

vy +ϒ(t2) , where (24)

I =
∣∣∣∣T− F+R

2

∣∣∣∣ . (25)

3.5.5 Hyperparameter Tuning

Due to the limited time frame of this work, only a limited number of hyperparameter tunings could
be performed. The tuning is described in the following.

Figure 3.8: The difference in robust-
ness during a training between the
Adam optimizer (green) and the SGD
optimizer (purple).

Optimizers Due to the codebases of other projects of-
ten using the Adam optimizer, we initially implemented
it as well into our encoder. Though it was noticeable that
the Adam optimizer’s error frequently fluctuated and af-
ter comparing it to the stochastic gradient descent (SGD)
optimizer provided by PyTorch, the SGD optimizer out-
performed the Adam optimizer as seen in Figure 3.8.
Though, the work of [Chauhan et al., 2021] has shown
that Adamax generally outperforms the Adam, AdamW
and SGD optimizer, as the six best tuning results fea-
tured the Adamax optimizer. Consequently the Adamax
optimizer was implemented into the AFRRMC’s en-
coder to improve the performance.

Trend Slope Calculation Even though it is not used
in the final implementation, a trend slope calculation has
proven to be very useful for both debugging and our
learning process. Initially, the trend slope was aimed
to dynamically adjust the learning rate of the optimizer,
based on the current slope of the loss graph. This al-
lowed the algorithm to dynamically respond to plateaus
and local minimums using the following calculation.

First we create two arrays, the array x with matching indexes starting from 1 and array y with
the values of data points. Then we compute four variables: a, b, c and d. a multiplies both of the
arrays x and y element-wise and then computes the arithmetic mean of the elements. b calculates
the average of x and y respectively and multiplies the results with each other. c squares the array
x and then computes a mean, while d first computes the mean of x and then squares it. The final
slope is calculated by the formula:

a−b
c−d

. (26)
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Static Parameter Tuning To tune hyperparameters of the network, such as the learning rate
of the encoder and decoder or the size of the feature maps in both, several efforts were taken.
Initially the Python library Tune from the Ray API was considered due to its accessibility and ease
of implementation. Though, the algorithm needs access to Blender in the form of a built Python
module, which is not distributed along with regular releases. Therefore we switched to a Bayesian
Optimization algorithm from [Nogueira, 2020]. Though, due to the rapid changes in network
design, only the learning rate of the decoder and the maximum gradient norm of the encoder were
sufficiently tuned.
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Figure 4.1: Selected results of the AFRRMC algorithm. Top row: The input frames of the AFR-
RMC pipeline. Bottom row: The corresponding outputs of the trainings.

4 User Study and Evaluation

Due to the subjectivity of 3D animations and the workflows of the field, we conducted a user study
to evaluate the algorithm and pipeline previously described. The objective and subjective results
of the prototype and the study as well as the structure of the latter are described in the following.

4.1 Study Design

Since the evaluation of the research subject relies on experience with 3D animation and its work-
flows, we needed to gather animation experts meeting specific requirements. The requirements
were defined for our case as follows:

Definition An expert is a person who either worked professionally in the 3D animation field
before or is enrolled in some form of 3D animation studies.

Figure 4.2: The facial land-
mark tracking algorithm by
[Bulat and Tzimiropoulos, 2017].

Due to the requirements narrowing down the sam-
ple size of the study, we aimed for a qualitative user
study, based on the concept of expert interviews. We
conducted 10 semi-structured interviews which allowed
for additional questions and elaborations from both, the
interviewer and interviewee. The questions amounted
to 69 in total, where the format of the questions varied
between single choice, multiple choice, open questions
and likert scales. The interview also contained two nar-
rative parts, where the interviewer explained basic con-
cepts necessary to understand the research subject. This
included theoretical background of facial motion capture
and its weaknesses, deepfake algorithms, a basic under-
standing of neural network algorithms and trainings, as
well as the AFRRMC pipeline and an abstraction of the
inner workings of the prototype.
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To be able to compare our method to pre-existing solutions, we chose a point tracking solution
by [Bulat and Tzimiropoulos, 2017] from recent available landmark tracking algorithms. Though,
the output (as shown in Figure 4.2) cannot be used as a direct comparison. But needs to be resized,
which was achieved through bicubic interpolation, and imported into Blender and tracked by an
animator. To ensure an optimal comparison, the mapping and tracking was done by hand, while
the result was not tweaked in any way. This would follow our goal to automate as much as possible
and introduce minimal manual labor during the process.

4.2 Results

The algorithm was trained for 12.5, 16.2 and 65 minutes respectively, resulting into the output
poses shown in Figure 4.1. The time to compute one of the poses based on a previously stabilized
image, averaged to 1.218 seconds with a standard deviation (SD) of 0.0046 seconds. These timings
could be achieved, since only a part of the network and no rendering is necessary to compute the
output. The times were measured on a personal computer featuring an NVIDIA GeForce GTX
1080 Ti GPU and an Intel® Core™ i7-6800K CPU.

The participants of the study had averagely 5.725 years of experience with 3D animation and
2.829 years of professional experience in the field. 4 of the 10 interviewees also worked on a AAA
game or movie title as an animator or part of an animation related department before. The term
AAA lacks a general definition, therefore we defined it as the following: "AAA" refers to a game,
movie or other kind of media with photorealistic, high fidelity graphics and a budget of at least
USD 10 million.

4.3 Evaluation

To ensure that our problem statement is valid, 11 questions were aimed to answer how much of an
issue problems such as motion data mapping, expression intensity matching, rig incompatibility
and low resolution data is for 3D animators. All participants confirmed the problem statement and
90% of them encountered it before. The single exception was an animation student who wasn’t
involved yet with facial animation at the point of the study. Though, none of the interviewees had
found a solution for this problem. They were asked to describe how much of the setup process of
characters is manual labor, based on a likert scale, where a 1 corresponds to "nothing" and a 10 to
"everything". They rated it a 6.8 on average. Another scale was presented to the participants where
a 1 corresponds to "enjoyable/quick" and a 10 to "unpleasant/tedious", rating the setup process a
7.7. In response to whether the process was "very easy" (1) or "very hard" (10), the answers
averaged to a 6.6. They also rated their experience with facial motion capture from "it’s a breeze"
(1) to "really tedious" (10) with a mean of 7.2. Regarding the time needed to setup an already
existing facial rig for motion capture, the responses of 9 participants averaged to 21 hours with a
relatively high SD of 55.17 hours. The last participant was not able to form a numeric answer to
the question because "it needs a whole team for that".

Before showing the participants the algorithm’s output, we asked them about specific require-
ments that the prototype would need to meet, for them to implement AFRRMC into their own
workflow. Regarding the amount of time needed for the algorithm to train, the interviewees re-
sponded with 8.108 days on average, with an SD of 11.868 days. The requirement for the execution
time averaged 20.186 hours with an SD of 52.48 hours. Between "the algorithm should be barely
usable with a documentation" (1) and "plug and play" (10), the experts averaged to 6.4 points with
an SD of 1.713 points. To quantify the quality requirement, a likert scale was presented twice
(once before and once after showing the resulting poses) to the participants where they needed to
rate between the "resemblance of a human face" (1) and "photorealistic" (10), averaging to a 5.7
with an SD of 1.509 points.

After showing the experts the results of the poses, they rated the quality of the prototype with
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a 6, where a 1 corresponds to "resembles a human expression" and a 10 to "photorealistic". The
SD of the likert scale amounted to 1.414 points. The usability was rated a 7.5 with an SD of
2.014 points, where 1 corresponds to "very hard to use" and 10 to "very easy to use". When the
results of the AFRRMC algorithm were compared with another method, in 60% of the 30 cases the
AFRRMC algorithm was preferred. When compared to current facial motion capture solutions,
the experts rated the prototype a 5.3 between "much worse" (1) and "much better" (10) on a likert
scale, with an SD of 1.767 points.

Out of the 10 experts, 80% would use the AFRRMC prototype in its current state and 50%
think that AFRRMC is viable in a large-scale or AAA production, while 6 of the 10 participants
explicitly stated that it would be beneficial for smaller sized independent studios. The participants
also stated that averagely 56% of their time would be saved if they had access to the prototype,
with an SD of 25.033%. When asked what they would like to see primarily improved, 80% of the
participants answered either with "the quality" or "the precision". A single expert prioritized the
speed of the algorithm to match real-time applications, and another participant prioritized a slider
for scaling the expressiveness of the poses.

We also asked the participants about the potential and direction of this specific research and
method, where all of them agreed that it has potential, while 90% used one of the preceding words:
"a lot", "very" and "big". There were also multiple use cases mentioned for this method, apart
from using the output directly as a facial animation. For instance, it could be used for educational
purposes. One of the experts mentioned that they would like to show it to students for them to try
it out. Another one mentioned that it could be used for computer-animated avatars, where a high
amount of facial data needs to be processed in a minimal amount of time. The prototype could also
be used as reference, as mentioned by two experts, since usually animators only work based off
the sound of the performance, according to one participant. Another mentioned use case is to use
the AFRRMC algorithm’s output as a baseline and add additional correction layers of animated
keyframes on top. Lastly, new research opportunities were mentioned, since the prototype "would
allow other kinds of projects that we currently don’t even dream about", according to an expert.
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5 Discussion

The results of the study suggest that the current animation workflow is flawed and that multiple
parts, such as setting up a 3D character rig for facial motion capture, are labor intensive. Not
only does the setup require averagely over 20 work hours of the interviewed expert’s time, but it
is also rather unpleasant and tedious. These findings support the statement from [Zollhöfer et al.,
2018], that the animation workflow as a whole is highly time-consuming and labor intensive, and
lacks automation considerably. Though, the results have also shown that the proposed method is
able to save averagely more than half of the expert’s time, while still keeping a certain degree of
quality and involving a minimal amount of manual labor. This implies that the automation of the
facial motion tracking pipeline was successful. Consequently, the objective of this work has been
accomplished.

The findings also suggest that the AFRRMC method can supersede other monocular point
tracking methods if minimal manual labor is required. The study also implies that the prototype
is more easy to use than current solutions and can even be utilized in learning environments for
animation students. The majority consensus between the experts hints to the statement that AFR-
RMC is useful to the majority of 3D animators. Though, due to the small sample size of our study,
more research is needed to confirm the last-mentioned statement.

AFRRMC is also robust to a variety of video inputs in cases including, but not limited to, the
ones shown in Figure 2.10, as different lighting setups and actors can be used as shown in Figure
4.1. This suggests that AFRRMC is more robust than the to date most recent work in this research
area by [Moser et al., 2021], due to the usage of a deepfake algorithm, eliminating variables such
as the actor’s identity and environment.

Based on the amount of professional and general experience about 3D animation, we argue
that the participants of our study are qualified to participate in this research as "experts" that can
effectively evaluate the prototype and method and can be consulted for other questions. Contrary to
the previously mentioned results, the relatively high standard deviation in the execution duration
requirement question suggests either a use case conflict or a lack of comprehension around the
topic of neural networks. Since the prototype generates only a single frame during the execution,
the time for one second of facial animation at 30 frames per second, would be 30 seconds if the
algorithm takes a single second to compute. Though, 8 of the 10 participants answered with values
equal or above of one minute, ranging up to seven days. This seemed contradictory to us, but even
after further clarification in the most prominent cases from the interviewer, none of the participants
wanted to change their answer. Though, we can still compare the requirements against the actual
measurements. The time needed for the algorithm to train takes up 0.27% of the required time,
while the execution is averaging 0.0017%. This shows how distant the requirements and the real
measurements are, but still confirms that the prototype is able to meet the requirements set by the
experts.

While half of the participants responded positively to whether the prototype could be used in
a large scale or AAA production, we agree with the majority of the interviewees, that this method
is more useful to independent studios or individuals. Larger studios often have their own in-house
software and are often able to hire more animators to combat the labor intensive nature of the
process, according to the experts.

Next to the previously mentioned, relatively small sample size of the study, time was the most
limiting factor. The tight schedule of this work and the extensive prototyping phase with multiple
approaches, limited the amount of tuning and optimizations considerably. Even on the same day as
the study commenced, final optimizations were implemented into the prototype, leaving smaller
time frames for the final trainings of the algorithm. Therefore we argue that the performance
and especially the quality and precision can be greatly improved if the prototype is revisited in
future works. This statement is also supported by the expert’s responses about the potential of the
method.
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An additional limitation of this work is that due to time constraints, the algorithm could only
be tested on a single rig and using only one deepfake. Although we argue that due to the rig
registering algorithm, any bone-based facial rig should be processable and should yield results
similar to the rig used in Figure 4.1. This last scenario remains untested though and requires
further research. Additionally, due to the same constraint, we were not able to test the AFRRMC
algorithm using different deepfake algorithms. It might be beneficial to make use of other types
of algorithms too, such as full-body deepfake algorithms.
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A 3D animated face is a psychologically sensitive and structural complex geometry, requiring
large amounts of tedious and time-consuming manual labor during the setup and tracking process.
The monocular facial motion tracking pipeline is far from a fully automated workflow, but we
showed in this work that it can be highly automated, while keeping a certain degree of quality.

We proposed for the first time to the best of our knowledge, an unsupervised image-based
learning algorithm that is able to pose a 3D character’s bone controllers, matching a single input
image. The algorithm does not rely on any pre-generated datasets, apart from the automatically
registered rig. The utilization of a deepfake algorithm allows the algorithm to skip certain chal-
lenges, such as varying lighting setups, backgrounds and actors.

We also proposed a fully automated end-to-end pipeline that is able to register a 3D character
rig in a way that allows our proposed unsupervised neural network to process the rig. This method
of learning positional and rotational parameters for virtually any rig allows for a wide range of
applications and opens new research opportunities.

Lastly, we proposed a method for comparing facial deformations and poses, utilizing a generic
render engine, which was implemented into the neural network’s learning algorithm. We created
a prototype based on the algorithm and methods previously mentioned and conducted a user study
based on the concept of an expert interview for evaluation. According to the experts, AFRRMC is
preferred in 60% of the cases when compared to a traditional point tracking method and the study
suggests that the method is more easy to use than current facial motion capture solutions. While
further research is needed (due to the small sample size of the study) to determine how useful the
prototype is, our study already suggests that more than half of the amount of hours an animator
spends, setting up a facial rig and tracking the motions, can be saved through our method.

As previously mentioned, the sample size of the study amounted to a relatively small size
of 10 participants. To confirm the observations and evaluations of this work, future research
with a higher count of participants is needed. The AFRRMC algorithm was also not sufficiently
tuned and optimized, leaving room for future endeavors to increase the network’s precision and
speed. And while we argue that the proposed pipeline, consisting of a deepfake algorithm, a rig
registration algorithm and a neural network, is already sufficient for most tasks, more research
about their respective architecture and especially about interfaces between the algorithms and the
user is needed.

The AFRRMC prototype has shown that it is possible to automate the facial animation work-
flow as a whole. But this work barely lays out the foundation for future fully automated facial
motion capture solutions, making high fidelity facial animations available to every production
studio at every level and potentially for the general public.
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7 Appendix

Literature Study

Search results Publications

ACM DL 38
DRS 11

Intermediate result 49

Context filter Publications

ACM DL -25
DRS -6

Intermediate result 18

Proceedings Publications

Replaced -6
Additional papers 9

Intermediate result 21

Discrepancy filter Publications

Duplicates -1

Total 20

Table 7.1: The literature study selection
process, amounting to 20 papers being re-
viewed from the initial 49 search results.

To accurately build on existing work, we col-
lected research papers from the following sources:
the ACM Digital Library (ACM DL) and publi-
cations from DisneyResearch|Studios (abbreviated
hereafter as: DRS), who are partners of technol-
ogy units such as Pixar Animation Studios, Lucas-
film/ILM, Marvel Studios and others. The DRS
database was considered, because it contains some
publications that are not available in the ACM Dig-
ital Library, but are relevant to this topic. Looking
at the size of the database, they differ by multiple
thousands in scale, ACM offering 2 983 116 pub-
lications and DRS just 486 (as of December 13th,
2021). The search terms used were adjusted in fa-
vor of DRS, allowing for more publications to be
reviewed. The publications of DRS were filtered by
the term:

face tracking

As a result, 11 publications from the DRS
database were added to the selection. To incorpo-
rate the initially set objective, to automate the facial
motion tracking pipeline, the search term was for-
mulated to filter the existing work of the ACM DL
appropriately. No restrictions were applied on the
time period for either database, as less recent ap-
proaches may become more feasible with modern
technology and increased computational resources.
The search term for the ACM DL is as follows:

("automation" OR "automate")
AND ("facial tracking"
OR "facial motion capture")
AND ("workflow" OR "pipeline")

Consequently, the ACM Digital Library was able to contribute 38 research papers, yielding 49
publications in total.

To extract the most relevant publications, all of them were reviewed and either selected or
discarded following a specific procedure. First, the title and abstract of each paper were read
and conference proceedings were additionally manually searched for other relevant publications
in the area. By categorizing the findings in terms of how well they fit into the context of our
objective, 6 publications from DRS, 14 papers and 11 conference proceedings from the ACM
DL were screened out to the best of our knowledge. These values might seem relatively high,
but since the specifications of this thesis involve RGB video data, all of the approaches using
infrared sensors or other types of depth cameras were discarded. The remaining 6 conference
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proceedings were replaced by their most relevant papers respectively, resulting in 9 new additions
to the selection, increasing the count by 3 to the intermediate result of 21. During a final filtering,
one publication was found to be a duplicate of an already selected publication extracted from a
proceeding and consequently removed. Therefore, the total number of remaining papers to be
analyzed thoroughly amounts to 20 publications, as shown in Table 7.1.
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